Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Zonal efficiency limit calculation for nano-structured solar cells

Identifieur interne : 003558 ( Main/Repository ); précédent : 003557; suivant : 003559

Zonal efficiency limit calculation for nano-structured solar cells

Auteurs : RBID : Pascal:10-0417232

Descripteurs français

English descriptors

Abstract

We extend the well-known Shockley-Queisser detailed balance calculation for determining the efficiency limit of a solar cell to the case of strong local deviations of the optical power absorption as present in nano-structured photovoltaic devices. In addition, the simple assumption of perfect absorption of all incident light exceeding the bandgap is refined. We present a modified Shockley-Queisser efficiency limit calculation for nano-structured photovoltaic devices, it incorporates a rigorous wave optics calculation and spatially resolved generation of electron-hole pairs. We apply this method to core-shell single-junction InP nanowire array for the use in concentrator solar cells. We investigate the efficiency limits regarding the arrangement of the active regions within the wire. Our results indicate that in a nanowire array solar cell with low volume fill factor the efficiency limit can approach the values of planar thin-film devices. This observation indicates the occurrence of micro-concentration and underlines the necessity of a wave optics approach. The spatially and spectrally resolved analysis shows that generation on the surface of the nanowires is considerable, particularly with regard to high energy photons. Therefore, it is necessary to efficiently extract those carriers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0417232

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Zonal efficiency limit calculation for nano-structured solar cells</title>
<author>
<name sortKey="Kupec, Jan" uniqKey="Kupec J">Jan Kupec</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Suisse</country>
<wicri:noRegion>8092 Zurich</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SHUQING YU</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Computational Electronics and Photonics Group, University of Kassel, Wilhelmshöher Allee 71</s1>
<s2>34121 Kassel</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Witzigmann, Bernd" uniqKey="Witzigmann B">Bernd Witzigmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Computational Electronics and Photonics Group, University of Kassel, Wilhelmshöher Allee 71</s1>
<s2>34121 Kassel</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0417232</idno>
<date when="2010">2010</date>
<idno type="stanalyst">PASCAL 10-0417232 INIST</idno>
<idno type="RBID">Pascal:10-0417232</idno>
<idno type="wicri:Area/Main/Corpus">003E62</idno>
<idno type="wicri:Area/Main/Repository">003558</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compound</term>
<term>Electron hole pair</term>
<term>III-V semiconductors</term>
<term>Indium Phosphides</term>
<term>Nanowires</term>
<term>Solar cell</term>
<term>Thin film</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Paire électron trou</term>
<term>Cellule solaire</term>
<term>Couche mince</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Indium Phosphure</term>
<term>Nanofil</term>
<term>In P</term>
<term>InP</term>
<term>0130C</term>
<term>8460J</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We extend the well-known Shockley-Queisser detailed balance calculation for determining the efficiency limit of a solar cell to the case of strong local deviations of the optical power absorption as present in nano-structured photovoltaic devices. In addition, the simple assumption of perfect absorption of all incident light exceeding the bandgap is refined. We present a modified Shockley-Queisser efficiency limit calculation for nano-structured photovoltaic devices, it incorporates a rigorous wave optics calculation and spatially resolved generation of electron-hole pairs. We apply this method to core-shell single-junction InP nanowire array for the use in concentrator solar cells. We investigate the efficiency limits regarding the arrangement of the active regions within the wire. Our results indicate that in a nanowire array solar cell with low volume fill factor the efficiency limit can approach the values of planar thin-film devices. This observation indicates the occurrence of micro-concentration and underlines the necessity of a wave optics approach. The spatially and spectrally resolved analysis shows that generation on the surface of the nanowires is considerable, particularly with regard to high energy photons. Therefore, it is necessary to efficiently extract those carriers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7597</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Zonal efficiency limit calculation for nano-structured solar cells</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Physics and simulation of optoelectronic devices XVIII : 25-28 January 2010, San Francisco, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>KUPEC (Jan)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHUQING YU</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WITZIGMANN (Bernd)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>WITZIGMANN (Bernd)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Integrated Systems Laboratory, ETH Zurich, Gloriastrasse 35</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Computational Electronics and Photonics Group, University of Kassel, Wilhelmshöher Allee 71</s1>
<s2>34121 Kassel</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>759704.1-759704.10</s2>
</fA20>
<fA21>
<s1>2010</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham, Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-7993-8</s0>
</fA26>
<fA26 i1="02">
<s0>0-8194-7993-4</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174681670020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>19 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0417232</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We extend the well-known Shockley-Queisser detailed balance calculation for determining the efficiency limit of a solar cell to the case of strong local deviations of the optical power absorption as present in nano-structured photovoltaic devices. In addition, the simple assumption of perfect absorption of all incident light exceeding the bandgap is refined. We present a modified Shockley-Queisser efficiency limit calculation for nano-structured photovoltaic devices, it incorporates a rigorous wave optics calculation and spatially resolved generation of electron-hole pairs. We apply this method to core-shell single-junction InP nanowire array for the use in concentrator solar cells. We investigate the efficiency limits regarding the arrangement of the active regions within the wire. Our results indicate that in a nanowire array solar cell with low volume fill factor the efficiency limit can approach the values of planar thin-film devices. This observation indicates the occurrence of micro-concentration and underlines the necessity of a wave optics approach. The spatially and spectrally resolved analysis shows that generation on the surface of the nanowires is considerable, particularly with regard to high energy photons. Therefore, it is necessary to efficiently extract those carriers.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Paire électron trou</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Electron hole pair</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Par electrón hueco</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>11</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>47</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>47</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>47</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Binary compound</s0>
<s5>50</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Compuesto binario</s0>
<s5>50</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>51</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>51</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Indio Fosfuro</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>61</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>61</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>270</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Physics and simulation of optoelectronic devices</s1>
<s2>18</s2>
<s3>San Francisco CA USA</s3>
<s4>2010</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003558 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 003558 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0417232
   |texte=   Zonal efficiency limit calculation for nano-structured solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024